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Abstract. This paper is the second part of a work on stabilizing the classical hierarchical basis
HB by using wavelet-like basis functions. Implementation techniques are of major concern for the
multilevel preconditioners proposed by the authors in the first part of the work, which deals with
algorithms and their mathematical theory. Numerical results are presented to confirm the theory
established there. A comparison of the performance of a number of multilevel methods is conducted
for elliptic problems of three space variables.
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1. Introduction. In this paper we are concerned with implementation tech-
niques on the wavelet-modified hierarchical basis method proposed in [16]. As dis-
cussed in [16], the method stabilizes the classical HB [18] by taking away from each
HB function its approximate L2-projections on coarse levels. The modified and sta-
bilized hierarchical basis shall be called Approximate Wavelet-Modified Hierarchical
Basis (AWM-HB).

The AWM-HB is viewed as a stabilization of the HB in the sense that it provides
a stable Riesz basis in the Sobolev space Hα(Ω) for α ∈ (0, 1]. As a result, it can be
employed to yield optimal preconditioners for finite element discretizations of elliptic
problems.

Other stabilizations of the HB methods, such as the AMLI method presented in
[2] and [14], are not of V-cycle type, whereas the AWM-HB is. The multiplicative
AWM-HB method fits in the general framework as given in Vassilevski [13] and [14],
which is an extension of the two-level method proposed by Bank and Dupont [3] and
studied further by Axelsson and Gustafsson [1].

A survey on the subject of HB stabilization can be found in Vassilevski [15].
Other related results in the use of L2 and H1 orthogonal direct decompositions for
finite element spaces can be found in Griebel and Oswald [9] and Stevenson [11], [12].
Similar constructions for wavelets were exploited in Carnicer, Dahmen, and Peña [7].
Our result is general in that it is of optimal order and applies to cases wherever the
standard finite element HB decomposition exists.

To implement the proposed AWM-HB preconditioners, we reformulate the algo-
rithm of [16] in a matrix form. Computationally feasible algorithms are also designed
to compute the action of the approximate L2-projection operator Qak−1 on functions
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v ∈ V (1)
k , where k indicates the number of levels, with larger k corresponding to finer

spaces. Details can be found in sections 2.2 and 4.
The major concern of this paper is to report some numerical results on the per-

formance of various preconditioners involving HB, AWM-HB, and multigrid (MG)
methods for elliptic problems in three dimensions (3D). Our comparison shows a su-
perior performance in the CPU timing of the MG method over other tested algorithms.
The performance of AWM-HB falls in between HB and MG. Thus, AWM-HB can be
used as a stabilization technique to any available 3D HB code, especially for elliptic
problems discretized on highly nonuniform grids with local refinements.

The paper is organized as follows. In section 2, we review the additive and
multiplicative preconditioners arising from the AWM-HB method. In section 3, we
present some examples on the approximate L2-projection. In section 4, we reformulate
the AWM-HB preconditioners in a matrix-vector form. In section 5.1, we present some
numerical results which illustrate the theory developed in [16]. Finally, in section 5.2
we present a comparison test on various preconditioning methods for problems in 3D.

2. Preliminaries.

2.1. A model problem and its discretization. The bilinear form under con-
sideration is given as follows:

a(ϕ,ψ) =

∫
Ω

a∇ϕ · ∇ψ ∀ϕ, ψ ∈ H1
0 (Ω).(2.1)

Here a = {aij(x)} is a coefficient matrix, which is assumed to be symmetric and
positive definite uniformly in x ∈ Ω with bounded and measurable entries aij(x).

To discretize the bilinear form a(·, ·), we use the routine successive (possibly local)
refinement procedure to generate a sequence of finite element triangulations Tk for
k = 0, 1, . . . , J , with T0 being the initial triangulation. Let Vk be the conforming
piecewise-linear finite element space associated with Tk. Denote by A(k) : Vk → Vk
the corresponding discretization of the bilinear form given by

(A(k)ϕ,ψ) = a(ϕ,ψ) ∀ϕ,ψ ∈ Vk,
where (·, ·) stands for the standard L2-inner product.

Each Vk is equipped with a standard Lagrangian (nodal) basis {φ(k)
i , xi ∈ Nk},

where Nk is the node set (the set of nodal degrees of freedom) of Vk. The basis

functions satisfy φ
(k)
i (xj) = δi,j—the Kronecker symbol when xj runs over the node set

Nk. We assume that Nk ⊂ Nk+1. Due to the refinement process we have Vk ⊂ Vk+1.
Let Qk be the L2-projection operator from L2(Ω) to Vk defined by

(Qkv, ψ) = (v, ψ) ∀ψ ∈ Vk.
It is clear that the action Qkv requires inverting a mass (or Gram) matrix. Let
Ik : C(Ω̄)→ Vk be a nodal interpolation operator given as follows:

Ikv =
∑
xi∈Nk

v(xi)φ
(k)
i .

Finally, let Qak be an approximation of Qk satisfying

‖(Qk −Qak)v‖0 ≤ τ‖Qkv‖0 ∀v ∈ L2(Ω)(2.2)

for a prescribed small tolerance τ ≥ 0.
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2.2. The AWM-HB preconditioners. The AWM-HB preconditioners exploit
the following direct decomposition for each Vk:

Vk = V 1
k ⊕ Vk−1,

where V 1
k = (I−Qak−1)V

(1)
k and V

(1)
k = (Ik−Ik−1)Vk. Using the above decomposition

recursively we obtain the following:

V = V0 ⊕ V 1
1 ⊕ V 1

2 ⊕ · · · ⊕ V 1
J .

Let N (1)
k = Nk \ Nk−1. It is not hard to see that the set of functions

{(I −Qak−1)φ
(k)
i : xi ∈ N (1)

k }(2.3)

forms a basis of V 1
k . The new basis {(I −Qak−1)φ

(k)
i } is clearly a modification of the

classical HB functions of V
(1)
k ; the modification was made by taking away from the

HB function φ
(k)
i its approximate L2-projection onto the nearest coarse space Vk−1.

The following operators are needed in the construction of the AWM-HB precon-
ditioners:

• The solution operator A
(k)
11 : V 1

k → V 1
k as the restriction of A(k) onto the

subspace V 1
k . A

(k)
11 is defined as follows:

(A
(k)
11 ψ

1, ϕ1) = a(ψ1, ϕ1) ∀ϕ1, ψ1 ∈ V 1
k .(2.4)

• A(k)
12 : Vk−1 → V 1

k and A
(k)
21 : V 1

k → Vk−1 are given by

(A
(k)
12 ψ̃, ϕ

1) = (ψ̃, A
(k)
21 ϕ

1) = a(ϕ1, ψ̃) ∀ψ̃ ∈ Vk−1, ϕ
1 ∈ V 1

k .(2.5)

With the above notation, the operator A(k) naturally admits the following two-
by-two block decomposition:

A(k) =

[
A

(k)
11 A

(k)
12

A
(k)
21 A(k−1)

]
} V 1

k

} Vk−1
.(2.6)

Let B
(k)
11 be given symmetric and positive definite matrices which are spectrally equiv-

alent to A
(k)
11 :

(A
(k)
11 ϕ

1, ϕ1) ≤ (B
(k)
11 ϕ

1, ϕ1) ≤ (1 + b1)(A
(k)
11 ϕ

1, ϕ1) ∀ϕ1 ∈ V 1
k .(2.7)

Here b1 is an absolute constant.
Let A = A(J) be the operator of major concern. Below, we define two precondi-

tioners B and D that exploit the two-by-two block structure of each A(k) in (2.6).
Definition 2.1 (multiplicative AWM-HB preconditioners). The multiplicative

AWM-HB preconditioner of A = A(J), denoted by B = B(J), is defined by the follow-
ing procedure:

• Set B(0) = A(0).
• For k = 1, . . . , J , set

B(k) =

[
B

(k)
11 0

A
(k)
21 B(k−1)

][
I B

(k)−1

11 A
(k)
12

0 I

]
} V 1

k

} Vk−1
.
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Definition 2.2 (additive AWM-HB preconditioners). The additive AWM-HB
preconditioner of A = A(J), denoted by D = D(J), is defined by the following proce-
dure:

• Set D(0) = A(0).
• For k = 1, . . . , J , set

D(k) =

[
B

(k)
11 0
0 D(k−1)

] } V 1
k

} Vk−1
.

2.3. Main results for the AWM-HB preconditioners. In [16], we have
established a spectral equivalence between A and its preconditioners B and D. More
precisely, the following result was derived:

c1(Sv, v) ≤ (Av, v) ≤ c2(Sv, v) ∀v ∈ VJ ,(2.8)

where S = B(J) or D(J). Here ci are absolute constants independent of the mesh size
h. The estimate (2.8) is based on the following assumptions:

(A) The tolerance τ in (2.2) must be sufficiently small, but independent of the
mesh sizes hi or the level number J . More precisely, if CR is chosen such that

‖(Ik − Ik−1)v‖0 ≤ CR‖v‖0 ∀v ∈ Vk
and hk = 1

2hk−1 for the mesh size hk, then τ is determined by

τCR ≤ q < 1(2.9)

for any fixed constant q.
(B) There exists a constant σN > 0 such that the following estimate holds:

|Q0v|21 +

J∑
s=1

22s‖(Qs −Qs−1)v‖20 ≤ σN‖v‖21 ∀v ∈ V.

(C) There exist constants σI > 0 and δ ∈ (0, 1) (in fact, if hi = 1
2hi−1, then

δ = 1√
2
) such that the following strengthened Cauchy–Schwarz inequality

holds for any i ≤ j:
a(v, w)2 ≤ σIδ2(j−i)a(v, v)λj‖w‖20 ∀v ∈ Vi, w ∈ Vj .

Here λj = O(h−2
j ) is the largest eigenvalue of the operator A(j).

The assumptions (B) and (C) have been respectively verified by Oswald [10] and
Yserentant [18, 19]; see also [17], [5], and [8]. Note that (B) and (C) are the minimal
assumptions used in the modern convergence theory of the classical MG method.

The assumption (A) can be verified easily for quasi-regular partitions of the do-
main Ω. In fact, the standard L2-inner product is equivalent to the following discrete
version:

(v, w)0, k ≡ hdk
∑
xi∈Nk

v(xi)w(xi), v, w ∈ Vk

in the finite element space Vk. More precisely, there are absolute positive constants
γ1 and γ2 such that

γ1‖v‖20 ≤ (v, v)0, k ≤ γ2‖v‖20 ∀v ∈ Vk.
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It follows that

‖(Ik − Ik−1)v‖20 ≤ γ−1
1 hdk

∑
xi∈Nk\Nk−1

v2(xi) ≤ γ2

γ1
‖v‖20.

This shows that C2
R ≤ cond

(
D−1
k Gk

)
, where Gk is the mass (Gram) matrix at level k

and Dk is its diagonal. It can be seen that cond
(
D−1
k Gk

)
is uniformly bounded from

above by a positive number κ ≤ γ2

γ1
. Consequently, it suffices to choose τ such that

τ < κ−
1
2 . For the tetrahedra elements to be discussed in section 5.2 we have κ = 5.

The corresponding estimate on triangular elements is κ = 4.

One of the important features in the decomposition (2.6) is that the block A
(k)
11

is well conditioned. In particular, it is spectrally equivalent to the diagonal part
in its matrix representation with respect to the AWM-HB. Thus, the Richardson

preconditioner would be a good choice for B
(k)
11 in approximating A

(k)
11 (as in (2.7)).

3. On the approximate L2-projection. Let Qak−1 denote any approximate
L2-projection onto the subspace Vk−1. In practical computation, the operator Qak−1

is constructed by approximating the solution of

(Qk−1v, w) = (v, w) ∀ w ∈ Vk−1(3.1)

by simple iterative methods such as Jacobi or Gauss–Seidel iterations.

We now describe algorithms for computing the actions of Qak−1. For any v ∈ V (1)
k ,

let v = [ v1

0
] }Nk \ Nk−1

}Nk−1
be its coefficient vector with respect to the standard nodal

basis of Vk; the second block component of v is zero since v vanishes on Nk−1. Let

Ikk−1 = [ J12

I
] }Nk \ Nk−1

}Nk−1
(with the abbreviation J12 = J

(k)
12 ) and Ik−1

k = Ik
T

k−1 be the

natural coarse-to-fine, and respectively, fine-to-coarse transformation matrices. For
example, if the nodal basis coefficient vector of a function v2 ∈ Vk−1 in terms of the
nodal basis of Vk−1 is v2, then its coefficient vector with respect to the nodal basis of

Vk (note that v2 ∈ Vk−1 ⊂ Vk) will be Ikk−1v2 = [ J12v2

v2
] }Nk \ Nk−1

}Nk−1.

The action of J12 on vectors v2 can be carried out as in the following algorithm
(cf. [18]).

Algorithm 3.1 (computing actions of J12). Let v2 ∈ Vk−1 be the piecewise
linear function corresponding to the vector v2 in the standard nodal basis of Vk−1. The

entries of v1 = J
(k)
12 v2 are the values of the function v2 at the nodes xi ∈ Nk \ Nk−1.

More precisely, for each xi ∈ Nk \ Nk−1, the corresponding component is given by

v(xi) =
1

2
(v2(xi1) + v2(xi2)) .

Here, xi1 and xi2 ∈ Nk−1 are the endpoints of an edge E on the (k − 1)th level such
that xi ∈ Nk \ Nk−1 is the midpoint of E.

Denote now by Gk = {(φ(k)
j , φ

(k)
i )}xj ,xi∈Nk the mass matrix of level k. Then (3.1)

admits the following matrix-vector form:

wT
2 Gk−1v2 = (Ikk−1w2)TGkv ∀ w2·

Here v2 and w2 are, respectively, the nodal coefficient vectors of Qk−1v and w ∈ Vk−1.
Therefore, we only need to solve the following mass-matrix problem:

Gk−1v2 = Ik−1
k Gkv.(3.2)
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In other words, the exact L2-projection Qk−1v is actually given by G−1
k−1I

k−1
k Gkv·

Hence,

‖Qk−1v‖20 =
(
G−1
k−1I

k−1
k Gkv

)T
Gk−1

(
G−1
k−1I

k−1
k Gkv

)
= ‖G− 1

2

k−1I
k−1
k Gkv‖2.(3.3)

Here and in what follows we use the notation ‖x‖2 = xTx.
To have a computationally feasible basis, we have to replace G−1

k−1 by some ap-

proximations G̃−1
k−1 whose action can be computed by simple iterative methods applied

to (3.2). One possibility is to use any classical splitting of Gk−1 and consider approx-

imations of the form G̃k−1 = (Dk−1 −Lk−1)D−1
k−1(Dk−1 −Uk−1), where Dk−1, Lk−1,

and Uk−1 are, respectively, diagonal, lower-triangular, and upper-triangular sparse
matrices. The symmetrized Gauss–Seidel method is employed to approximate G−1

k−1

in our numerical experiments.
Other approximations are also feasible in the computation. For example, we

may evaluate the left-hand side of (3.1) by using simple quadrature rules, leading to

invertible approximations G̃k−1 for the mass matrix Gk−1. In particular, if the rule∫
T

ψ dx ≈ |T |
nv

nv∑
i=1

ψ(xi)

is employed on each element T (with |T | the area and {xi}nvi=1 the set of vertices of

T ), then the resulting approximation G̃k−1 would be a diagonal matrix. We point
out that this approximation may not be as accurate as required by (2.2), though a
spectral equivalence can be easily seen by using an element-based local analysis.

A good remedy for the above drawback is the following. Let Bk−1 be an approx-
imation of Gk−1. If the required accuracy (2.2) is not achieved, we would consider
the following polynomial approximation to G−1

k−1:

G̃−1
k−1 =

[
I − πm

(
B−1
k−1Gk−1

)]
G−1
k−1,(3.4)

where πm is a polynomial of degree m ≥ 1. The polynomial πm also satisfies πm(0) = 1
and 0 ≤ πm(t) < 1 for t ∈ [α, β], where the latter interval contains the spectrum of
the scaled mass matrix B−1

k−1Gk−1. Since B−1
k−1Gk−1 is well conditioned, the interval

[α, β] can be chosen to be independent of k. Thus, there is a fixed polynomial πm of

degree m such that the resulting approximation G̃−1
k−1 satisfies the required accuracy

in (2.2).

Now comes the estimate betweenQak−1 andQk−1. IfQak−1 is given by G̃−1
k−1I

k−1
k Gk

and (3.4), we have

‖Qak−1v −Qk−1v‖0 =
∥∥∥G 1

2

k−1

(
G−1
k−1 − G̃−1

k−1

)
Ik−1
k Gkv

∥∥∥
=

∥∥∥G 1
2

k−1πm
(
B−1
k−1Gk−1

)
G−1
k−1I

k−1
k Gkv

∥∥∥
=

∥∥∥πm (G 1
2

k−1B
−1
k−1G

1
2

k−1

)
G
− 1

2

k−1I
k−1
k Gkv

∥∥∥
≤ max

t∈[α,β]
πm(t)

∥∥∥G− 1
2

k−1I
k−1
k Gkv

∥∥∥
= max

t∈[α,β]
πm(t)‖Qk−1v‖0·
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Here we have used the identity (3.3) and the properties of πm. Thus, the polynomial
πm should be selected so that

τ ≥ max
t∈[α,β]

πm(t)

for a prescribed small parameter τ .
A simple choice of πm(t) is the truncated series

(1− πm(t))t−1 = pm−1(t) ≡ β−1
m−1∑
k=0

(
1− 1

β
t

)k
,(3.5)

which yields G̃−1
k−1 = pm−1(B−1

k−1Gk−1)B−1
k−1. We remark that (3.5) was obtained from

the following expansion:

1 = tβ−1
∞∑
k=0

(1− tβ−1)k, t ∈ [α, β].

With the above choice on the polynomial πm(t), we have

πm(t) = 1− tpm−1(t) = tβ−1
∑
k≥m

(1− β−1t)k = (1− β−1t)m.

It follows that

max
t∈[α,β]

πm(t) =

(
1− α

β

)m
·

The best choice of πm, as is well known, is given by the Chebyshev polynomial.
In this case, we have maxt∈[α,β] πm(t) ≤ 2δm/(1 + δ2m) < 2δm, where

δ = (
√
κ− 1)/(

√
κ+ 1) < 1

and κ = β/α is independent of k.
In our numerical experiments, we will be using m ≥ 1 steps of some stationary

iterative method applied to (3.2) with a convergence factor ρ < 1. The restriction on
τ < C−1

R (see assumption (A)) is then translated to ρm < C−1
R . It follows that

m > log(CR)/ log(ρ−1).(3.6)

For example, if the Jacobi method is employed to approximate the mass matrix,
then the diagonal part Bk−1 = Dk−1 of Gk−1 is actually the preconditioner and the
following estimate is valid:

• for triangular piecewise-linear elements,

1

2
vTDk−1v ≤ vTGk−1v ≤ 2vTDk−1v ∀ v;

• for tetrahedral piecewise-linear elements,

1

2
vTDk−1v ≤ vTGk−1v ≤ 5

2
vTDk−1v ∀ v.
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Fig. 1. Plot of hierarchical basis functions.

Thus, with the optimal choice of the parameter ω = 2
γ1+γ2

in the iterative matrix

I − ωD−1
k−1Gk−1, the convergence factor for triangular elements (for which γ1 = 1

2 ,
γ2 = 2) is bounded by ρ = 3/5. Using (3.6) and the fact that

CR ≤ cond
(
D−1
k−1Gk−1

) 1
2 ≤ 2,

we arrive at the following estimate:

m > log 2/(log 5− log 3) = 1.3569.

In other words, it suffices to perform m = 2 scaled Jacobi iterations in order to reach
the required accuracy for the approximate L2 projections.

For tetrahedral elements, we have CR ≤
√

5, γ1 = 1
2 , and γ2 = 5

2 . Then the
Jacobi method converges with rate bounded by ρ = 2/3. The estimate (3.6) leads
to 2m > log 5/(log 3 − log 2) = 3.9694. Again, it suffices to perform m = 2 Jacobi
iterations in order to obtain an H1-stable basis.

In addition to the Jacobi approximation, we have also used the symmetric Gauss–
Seidel approximation to the mass matrix in our numerical experiments. This method
is more accurate than the Jacobi.

In conclusion, the requirement (3.6) imposes a very mild restriction on m. In
practice, we expect to have small m (say, m = 1, 2) for any reasonably good approx-
imations Bk−1. This observation is confirmed by our numerical experiments to be
presented in section 5: m = 2, 4 for Jacobi approximations and m = 1, 2 for sym-
metric Gauss–Seidel approximations to Gk−1. We show in Fig. 1 a typical plot of a

nodal basis function of V
(1)
k and its approximate wavelet modifications resulting from

the Jacobi method with m = 1 in Fig. 2, m = 2 in Fig. 3, and m = 4 in Fig. 4.
Increasing m does not make much noticeable difference in the plot. We also show
the corresponding approximate wavelet modification for Bk−1 being the symmetric
Gauss–Seidel approximation to Gk−1 for m = 1 in Fig. 5 and m = 2 in Fig. 6. Note
that this does not give locally supported AWM-HB functions, since B−1

k−1Gk−1 is not
a sparse matrix. In Fig. 7 we show the exact wavelet-modified HB function.
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Fig. 2. Plot of a wavelet-modified HB function; one (m = 1) Jacobi iteration.
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Fig. 3. Plot of a wavelet-modified HB function; two (m = 2) Jacobi iterations.

It is seen that there is no visible difference among the graphs of the functions in
Fig. 4, Fig. 6, and Fig. 7. This is due to the exponential decay property of the exact
wavelet-modified HB function. The cross-section plot of various approximations is
shown in Figs. 8–13. The conjugate gradient method with 16 iterations was employed
to provide the “exact” solution of the mass-matrix problem (3.2) for the plots in
Figs. 7 and 13.

4. Matrix representations of the AWM-HB methods. We now turn to a
description of the multiplicative and additive AWM-HB methods in matrix forms.

Let us first derive matrix representations for the operators A
(k)
11 , A

(k)
12 , and A

(k)
21

introduced in section 2. In what follows of this section, capital letters without hats
will denote matrices corresponding to the standard nodal basis of the underlined finite
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Fig. 4. Plot of a wavelet-modified HB function; four (m = 4) Jacobi iterations.
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Fig. 5. Plot of a wavelet-modified HB function; one (m = 1) Gauss–Seidel iteration.

element space. For example, A(k) denotes the standard nodal basis stiffness matrix

with entries {a(φ
(k)
i , φ

(k)
j )}xi,xj∈Nk .

For any v ∈ Vk and its nodal coefficient vector v, we decompose v as follows:

v = (I −Qak−1)(Ik − Ik−1)v + w2,

where w2 ∈ Vk−1 is uniquely determined as w2 = Ik−1v + Qak−1(Ik − Ik−1)v. Our
goal is to find a vector representation for the components of v. Since the above
decomposition is direct, it is clear that there are vectors v̂1 and v̂2 satisfying

v = Y
(k)
1 v̂1 + Y

(k)
2 v̂2,(4.1)
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Fig. 6. Plot of a wavelet-modified HB function; two (m = 2) Gauss–Seidel iterations.
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Fig. 7. Plot of a wavelet-modified HB function; Sixteen CG iterations.

where (to be shown below),

Y
(k)
1 = (I − Ikk−1G̃

−1
k−1I

k−1
k Gk)

[
I
0

] }Nk \ Nk−1

}Nk−1
,

Y
(k)
2 = Ikk−1 =

[
J

(k)
12

I

] }Nk \ Nk−1

}Nk−1
·

(4.2)

The vectors v̂1 and v̂2 represent the two components of our wavelet-modified two–level
HB coefficient vector v̂ = [ v̂1

v̂2
] of v.

Let Y = [Y1, Y2], Y1 = Y
(k)
1 , and Y2 = Y

(k)
2 . We describe how v̂ = Y −1v can be

computed. In fact, we have

v = (Ik − Ik−1)v + v2, v2 = Ik−1v.
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Fig. 8. Cross-section plot of a wavelet-modified HB function; one Jacobi iteration.
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Fig. 9. Cross-section plot of a wavelet-modified HB function; two Jacobi iterations.

Let v = [ v1

v2
] }Nk \ Nk−1

}Nk−1
be the standard nodal coefficient vector of v ∈ Vk. Then,

the nodal coefficient vector of (Ik − Ik−1)v has the form

v − Ikk−1v2 =

[
v1 − J (k)

12 v2

0

] }Nk \ Nk−1

}Nk−1
;

the second component is zero since (Ik − Ik−1)v vanishes on Nk−1. Denote

v̂1 = v1 − J (k)
12 v2.(4.3)

Then v̂1 is also the AWM-HB coefficient vector of (I−Qak−1)(Ik−Ik−1)v expanded in

terms of the AWM-HB functions {(I −Qak−1)φ
(k)
i , xi ∈ Nk \ Nk−1} (which form the

basis of V 1
k ). Consequently, the second component v̂2, which is the coefficient vector
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Fig. 10. Cross-section plot of a wavelet-modified HB function; four Jacobi iterations.
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Fig. 11. Cross-section plot of a wavelet-modified HB function; one Gauss–Seidel iteration.

of w2 = Ik−1v + Qak−1(Ik − Ik−1)v ∈ Vk−1 with respect to the (k − 1)th level nodal
basis, is given by

v̂2 = G̃−1
k−1I

k−1
k Gk

[
I
0

]
v̂1 + v2

=

{
[0, I] + G̃−1

k−1

[
J

(k)T

12 , I
]
Gk

[
I −J (k)

12

0 0

]}
v.

(4.4)

To summarize, for any given v = [ v1

v2
] }Nk \ Nk−1

}Nk−1
, we first compute v̂1 by (4.3) and

then v̂2 by (4.4).
Conversely, for any given v̂1 and v̂2, we have from the first equation of (4.4) that

v2 = v̂2 − G̃−1
k−1I

k−1
k Gk

[
I
0

]
v̂1 = [0, I](Y1v̂1 + Y2v̂2).



WAVELET-MODIFIED HIERARCHICAL BASIS II 503

0 2 4 6 8 10 12 14 16
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 12. Cross-section plot of a wavelet-modified HB function; two Gauss–Seidel iterations.
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Fig. 13. Cross-section plot of a wavelet-modified HB function; 16 CG iterations.

It follows from (4.3) that v1 = v̂1 + J
(k)
12 v2 = [I, 0](Y1v̂1 + Y2v̂2), which verifies the

identity (4.1) with Y = [Y1, Y2] being the transformation matrix (defined in (4.2)).
We emphasize that the argument above provides algorithms for backward and

forward actions of the transformation matrix Y = [Y1, Y2]. This is an important
procedure in the implementation process.

Armed with the transformation matrix Y , we consider the problem

A(k)v = d,(4.5)

which is obtained by using the standard nodal basis. We transform it into the ap-
proximate wavelet-modified two-level HB by letting v = Yv̂. In other words, we shall
consider the transformed problem

Y TA(k)Y v̂ = d̂, d̂ = Y Td.(4.6)
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Using the two-level block partitioning of v̂ and Y = [Y1, Y2] we get the following
two-by-two block system for the two-level AWM-HB components of v̂:[

Â
(k)
11 Â

(k)
12

Â
(k)
21 Â

(k)
22

] [
v̂1

v̂2

]
=

[
d̂1

d̂2

]
,(4.7)

where

Â
(k)
11 = Y

(k)T

1 A(k)Y
(k)
1 ,

Â
(k)
12 = Y

(k)T

1 A(k)Y
(k)
2 ,

Â
(k)
21 = Y

(k)T

2 A(k)Y
(k)
1 ,

Â
(k)
22 = Y

(k)T

2 A(k)Y
(k)
2 = Ik−1

k A(k)Ikk−1 = A(k−1).

Once v̂1 and v̂2 are known, the solution v of (4.5) can be recovered by using the
formula (4.1). The transformed right-hand-side vector of (4.7) is given by

d̂1 = Y
(k)T

1 d = [I 0]
(
I −GkIkk−1G̃

−1
k−1I

k−1
k

)
d,

d̂2 = Y
(k)T

2 d = Ik−1
k d =

[
J

(k)T

12 , I
]

d·

Therefore, the multiplicative AWM-HB preconditioner B(k) defined in section 2
takes the following block-matrix form:

B̂(k) =

[
B̂

(k)
11 0

Â
(k)
21 B(k−1)

][
I B̂

(k)−1

11 Â
(k)
12

0 I

]
·(4.8)

HereB(0) = A(0). The preconditionerB(k) is related to B̂(k) in the same way asA(k) to
Â(k); namely, B̂(k) = [Y1, Y2]TB(k)[Y1, Y2] and therefore, B(k)−1

= [Y1, Y2]B̂(k)−1

[Y1, Y2]T .
We will show below in Algorithm 4.1 that the inverse actions of B(k) can be computed
only via the actions of A(k), Y1, Y2, and Y T1 , Y T2 in addition to the inverse actions of

B̂
(k)
11 .

We point out that (4.8) has precisely the same form as the algebraic multilevel
method studied in Vassilevski [13], Axelsson and Vassilevski [2], and Vassilevski [14].

Algorithm 4.1 (computing inverse actions of B(k)). The inverse actions of
B(k) are computed by solving the system

B(k)w = d,

with the change of basis w = Yŵ. Namely, by setting

w = Y1ŵ1 + Y2ŵ2 = [Y1, Y2]

[
ŵ1

ŵ2

]
,

d̂1 = Y T1 d,

d̂2 = Y T2 d,

w = B(k)−1

d is computed via the solution of B̂(k)ŵ = d̂ as follows:
• Forward recurrence:

1. compute ẑ1 = B̂
(k)−1

11 d̂1;
2. change the basis; i.e., compute z = Y1ẑ1;
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3. compute d̂2 := d̂2 − Â(k)
21 ẑ1 = Y T2 (d−A(k)z);

4. compute ŵ2 = B(k−1)−1

d̂2;
5. change the basis, i.e., compute v = Y2ŵ2;

• Backward recurrence:
1. update the fine–grid residual, i.e., compute

d̂1 := d̂1 − Â(k)
12 ŵ2 = Y T1 (d−A(k)Y2ŵ2) = Y T1 (d−A(k)v);

2. compute ŵ1 = B̂
(k)−1

11 d̂1;
3. get the solution by w = Y1ŵ1 + Y2ŵ2 = Y1ŵ1 + v.

END
Note that the above algorithm requires only the actions of the standard stiffness

matrix A(k), the actions of the transformation matrices Y1 and Y2 and their trans-

positions Y T1 and Y T2 , and the inverse actions of B̂
(k)
11 . The block B̂

(k)−1

11 is some

computationally feasible approximation to the well-conditioned matrix Â
(k)−1

11 . The
actions of Y −1 are not required in the algorithm.

We now formulate the solution procedure for one preconditioning step using the
multiplicative AWM-HB preconditioner B = B(J).

Algorithm 4.2 (multiplicative AWM-HB preconditioning). Given the problem

Bv = d,

initiate

d(J) = d.

Denote, for k = 1, . . . , J ,

Y
(k)
1 =

(
I − Ikk−1G̃

−1
k−1I

k−1
k Gk

)[ I
0

] } Nk \ Nk−1

} Nk−1
;

Y
(k)
2 = Ikk−1.

(A) Forward recurrence: For k = J down to 1 perform:
1. Compute:

d̂
(k)
1 = Y

(k)T

1 d(k);

2. Solve:

B̂
(k)
11 ŵ1 = d̂

(k)
1 ;

3. Transform basis:

w = Y
(k)
1 ŵ1;

4. Coarse-grid defect restriction:

d(k−1) = Y
(k)T

2 d(k) − Â(k)
21 ŵ1

= Y
(k)T

2 (d(k) −A(k)w);

5. Set k = k − 1. If k > 0 go to (1), else
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6. Solve on the coarsest level:

A(0)x(0) = d(0).

(B) Backward recurrence:
1. Interpolate result: Set k := k + 1 and compute

x(k) = Y
(k)
2 x(k−1);

2. Update fine-grid residual:

d̂
(k)
1 := d̂

(k)
1 − Â(k)

12 x(k−1)

= d̂
(k)
1 − Y (k)T

1 A(k)x(k)

= Y
(k)T

1 (d(k) −A(k)x(k));

3. Solve:

B̂
(k)
11 ŵ1 = d̂

(k)
1 ;

4. Change the basis:

w = Y
(k)
1 ŵ1;

5. Finally set

x(k) = x(k) + w;

6. Set k := k + 1. If k < J go to step (1) of (B), else set

v = x(J).

END
Similarly, one preconditioning solution step for the additive AWM-HB precondi-

tioner D = D(J) takes the following form.
Algorithm 4.3 (additive AWM-HB preconditioning). Given the problem

Dv = d,

initiate:

d(J) = d.

Denote, for k = 1, . . . , J ,

Y
(k)
1 =

(
I − Ikk−1G̃

−1
k−1I

k−1
k Gk

)[ I
0

] } Nk \ Nk−1

} Nk−1
,

Y
(k)
2 = Ikk−1

(A) Forward recurrence: For k = J down to 1 perform:
1. Compute:

d̂
(k)
1 = Y

(k)T

1 d(k);
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2. Solve:

B̂
(k)
11 ŵ1 = d̂

(k)
1 ;

3. Transform basis:

x(k) = Y
(k)
1 ŵ1;

4. Coarse-grid defect restriction:

d(k−1) = Y
(k)T

2 d(k);

5. Set k = k − 1. If k > 0 go to (1), else
6. Solve on the coarsest level:

A(0)x(0) = d(0).

(B) Backward recurrence:
1. Interpolate result: Set k := k + 1 and compute

w = Y
(k)
2 x(k−1);

2. Update at level k:

x(k) = x(k) + w;

3. Set k := k + 1. If k < J go to step (1) of (B), else set

v = x(J).

END
For both the additive and multiplicative preconditioners, it is readily seen that

the above implementations require only actions of the stiffness matrices A(k), the
mass matrices Gk, and the transformation matrices Ikk−1 and Ik−1

k . The approximate

inverse actions of Â
(k)
11 can be computed via some inner iterative algorithms giving

rise to the actions of B̂
(k)−1

11 . Similarly, the action of G̃−1
k−1 can be computed as

approximate solutions of the corresponding mass-matrix problem using m steps of
some simple iterative methods. Therefore, at each discretization level k, we perform a
number of arithmetic operations proportional to the degrees of freedom at that level
denoted by N k. In the case of local mesh refinement, the corresponding operations
involve only the stiffness and mass matrices computed for the subdomains where local
refinement was made. Hence, even in the case of locally refined meshes, the cost of the
AWM-HB methods is proportional to N = NJ . The proportionality constant depends
linearly on m = O(log τ−1) but is independent of J .

5. Numerical experiments.

5.1. 2D elliptic problems. The elliptic problem corresponds to the bilinear
form given in (2.1), where the domain Ω is the unit square (0, 1)2. The finite element
spaces Vk contain piecewise-linear continuous functions that vanish on ΓD ≡ {(x, 0) :
0 < x < 1}∪{(0, y) : 0 < y < 1}. The spaces Vk correspond to uniform triangulations
of Ω consisting of isosceles right triangles of size hk = 2−k for k = 0, 1, 2, . . . , J . The
diffusion coefficient a = a(x, y) in the bilinear form (2.1) was given by

a(x, y) = 1 + x2 + y2.
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Table 1
HB additive preconditioners.

# levels J λmin λmax κ ρ # iterations
3 0.193 2.161 11.16 0.458 27
4 0.130 2.520 19.35 0.578 39
5 0.095 2.790 29.29 0.648 50
6 0.076 2.997 39.00 0.695 60
7 0.062 3.158 50.41 0.730 70

Table 2
HB multiplicative preconditioners.

# levels J λmin λmax κ ρ # iterations
3 0.380 1.000 2.627 0.159 11
4 0.290 1.000 3.447 0.264 15
5 0.226 1.000 4.422 0.322 18
6 0.181 1.000 5.519 0.362 20
7 0.148 1.000 6.724 0.397 23

The problem with Â
(k)
11 was solved by the CG method. In other words, we may

assume that the actions of A
(k)−1

11 are exact within the machine accuracy. In the test,
different numbers of inner iterations m = 0, 1, 2, 4 were applied to solve the mass-
matrix problem in order to compute the actions of Qak−1. The polynomial πm in (3.4)
was given by πm(t) = (1− t)m and the following preconditioners are tested:

• Jacobi: In this case, the preconditioner Bk−1 in (3.4) is the diagonal part of
Gk−1.
• Gauss–Seidel: The preconditioner is given byBk−1 = (Dk−1−Lk−1)D−1

k−1(Dk−1

−Uk−1) in (3.4). Here we have assumed the standard splitting Gk−1 =
Dk−1 − Lk−1 − Uk−1 of a matrix into diagonal, lower-triangular, and upper-
triangular parts.

The Jacobi method gives rise to AWM-HB functions with local support, while the
Gauss–Seidel method does not have this feature. But the computational cost for both
methods is proportional to the total number of unknowns, since the actions of the
inverse of G̃−1

k−1 are of optimal cost. Note that the standard HB method corresponds

to m = 0 and πm(t) = 1, which yields G̃−1
k−1 = 0 in Algorithms 4.2 and 4.3. The

multiplicative method with m = 0 then corresponds to the method of Vassilevski [13],
which coincides with the HB-MG method of Bank, Dupont, and Yserentant [4]. The
additive method with m = 0 is a variant of the HB method of Yserentant [18].

Tables 1–10 illustrate the number of iterations in the preconditioned conjugate
gradient method applied to solving

Ax = b,

where A = A(J) for J = 3, 4, 5, 6, 7. The right-hand-side vector b was chosen to satisfy
a prescribed solution u(x, y).

The stopping criterion used is

rTW−1r ≤ 10−18rT0 W
−1r0,

where W is the preconditioner B or D, r is the current residual, and r0 = (I−AW−1)b
is the initial residual. We also show in Tables 1–10 the average convergence rate

ρ =
[√

rTW−1r
rT0 W−1r0

] 1
iter

.
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Table 3
AWM-HB additive preconditioners; two Jacobi iterations.

# levels J λmin λmax κ ρ # iterations
3 0.371 1.809 4.871 0.317 18
4 0.314 2.052 6.531 0.412 24
5 0.291 2.233 7.662 0.446 27
6 0.277 2.372 8.536 0.473 29
7 0.270 2.481 9.173 0.489 31

Table 4
AWM-HB multiplicative preconditioners; two Jacobi iterations.

# levels J λmin λmax κ ρ # iterations
3 0.661 0.999 1.511 0.082 8
4 0.608 1.000 1.643 0.109 9
5 0.586 0.999 1.703 0.127 10
6 0.577 0.998 1.832 0.128 10
7 0.567 0.998 1.758 0.119 10

Table 5
AWM-HB additive preconditioners; four Jacobi iterations.

# levels J λmin λmax κ ρ # iterations
3 0.354 1.832 5.175 0.336 19
4 0.302 2.071 6.855 0.419 24
5 0.285 2.250 7.885 0.454 27
6 0.278 2.386 8.566 0.474 29
7 0.275 2.492 9.055 0.485 30

Table 6
AWM-HB multiplicative preconditioners; four Jacobi iterations.

# levels J λmin λmax κ ρ # iterations
3 0.640 1.000 1.561 0.086 8
4 0.589 1.000 1.742 0.121 10
5 0.569 0.999 1.808 0.135 10
6 0.563 0.998 1.856 0.137 11
7 0.563 0.998 1.905 0.137 11

Table 7
AWM-HB additive preconditioners; one Gauss–Seidel iteration.

# levels J λmin λmax κ ρ # iterations
3 0.365 1.806 4.871 0.327 19
4 0.312 2.037 6.524 0.414 24
5 0.293 2.211 7.545 0.450 27
6 0.284 2.343 8.230 0.471 29
7 0.281 2.447 8.707 0.480 30

Table 8
AWM-HB multiplicative preconditioners; one Gauss–Seidel iteration.

# levels J λmin λmax κ ρ # iterations
3 0.657 1.000 1.521 0.085 8
4 0.604 1.000 1.653 0.117 10
5 0.583 0.999 1.714 0.128 10
6 0.568 1.000 1.759 0.134 11
7 0.561 0.999 1.780 0.135 11
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Table 9
AWM-HB additive preconditioners; two Gauss–Seidel iterations.

# levels J λmin λmax κ ρ # iterations
3 0.353 1.829 5.178 0.344 20
4 0.298 2.067 6.919 0.423 25
5 0.279 2.247 8.037 0.457 28
6 0.272 2.384 8.753 0.480 30
7 0.269 2.491 9.235 0.490 31

Table 10
AWM-HB multiplicative preconditioners; two (m = 2) Gauss–Seidel iterations.

# levels J λmin λmax κ ρ # iterations
3 0.639 1.000 1.564 0.086 8
4 0.584 1.000 1.710 0.118 10
5 0.561 1.000 1.782 0.137 11
6 0.553 0.999 1.805 0.138 11
7 0.550 0.999 1.816 0.141 11

Information on the minimum (λmin) and maximum (λmax) eigenvalues ofB(k)−1

A(k)

and D(k)−1

A(k) for k = 3, . . . , J as well as the condition number κ = λmax

λmin
can also

be found in Tables 1–10. The Lanczos method was employed in the code to provide
this information.

The numerical experiments show a uniform convergence for the AWM-HB meth-
ods for relatively “large” m = 3, 4. This is well illustrated in Tables 6 and 10. The
method is practically acceptable for a “small” iteration number m = 1 or m = 2.
For example, the Jacobi method with m = 2 (see Tables 3, 4) and the Gauss–Seidel
method with m = 1 (see Tables 7, 8) give weakly sensitive values on the number of
iterations when J increases from 3 to 7. An improvement in terms of iteration counts
over the standard HB method (see Tables 1, 2) is clearly demonstrated by this test.

To conclude, the numerical tests confirm the convergence theory presented in the
first part of this work.

5.2. 3D elliptic problems. To assess the performance of the AWM-HB meth-
ods in a realistic situation, we present in this section some numerical results in 3D.

The test problem solves u = u(x) satisfying

Lu ≡ −
3∑
i=1

∂

∂xi

(
ai(x1, x2, x3)

∂u

∂xi

)
= f(x),(5.1)

where x = (x1, x2, x3) and Ω = (0, 1)3. The Dirichlet boundary condition is imposed
on (5.1). The coefficients ai are given as follows:

a1(x) = 1 + 10 x2
1 + x2

1 + x2
3,

a2(x) = 1 + x2
1 + 10 x2

2 + x2
3,

a3(x) = 1 + x2
1 + x2

2 + 10 x2
3.

The finite element partition of Ω is constructed in the following way. First, we
partition Ω into small cubes of size hk = 2−k, k = 0, 1, . . . , J for a given J . The
vertices of the kth-level cubes form the nodes in Nk. Second, each cube of level k with
vertices (x1+i1h, x2+i2h, x3+i3h), i1, i2, i3 = 0, 1 is partitioned into six tetrahedrons
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Fig. 14. Cube partitioning into six tetrahedrons.

by projecting its main diagonal connecting (x1, x2, x3) with (x1 +hk, x2 +hk, x3 +hk)
onto the six faces. These tetrahedrons form the kth-level triangulation Tk. For the
sake of clarity, the procedure is illustrated in Fig. 14. It can be seen that actually Tk
is a refinement of Tk−1.

The nodal interpolation operator giving rise to the matrix representation Ikk−1 =

[ J
(k)
12
I

] } Nk \ Nk−1

} Nk−1
can be implemented by a simple averaging procedure along the

edges of the tetrahedrons. Algorithm 3.1 can be revisited for details.
Below we describe briefly how different methods are implemented in our numerical

experiments.
HB-MG method. The implemented scheme is a version of the one presented

in [4]. We are given Â(k) in the two-level HB

Â(k) =

[
A

(k)
11 Â

(k)
12

Â21 A(k−1)

]
·(5.2)

Here Â
(k)
12 = [I, 0]A(k)Ikk−1. Starting with B(0) = A(0), we define for k = 1, 2, . . . , J ,

B̂(k) =

[
D

(k)
11 − L(k)

11 0

Â
(k)
21 I

][
D

(k)−1

11 0
0 B(k−1)

] [
D

(k)
11 − U (k)

11 Â
(k)
12

0 I

] } Nk \ Nk−1

} Nk−1.

The inverse of the preconditioner is then given by

B(k)−1

=
[
Y

(k)
1 , Y

(k)
2

]
B̂(k)−1

[
Y

(k)
1 , Y

(k)
2

]T
,

where

Y
(k)
1 =

[
I
0

] } Nk \ Nk−1

} Nk−1
,

Y
(k)
2 = Ikk−1 =

[
J

(k)
12

I

] } Nk \ Nk−1

} Nk−1
.

The blocks D
(k)
11 , L

(k)
11 , and U

(k)
11 come from the standard splitting A

(k)
11 = D

(k)
11 −L(k)

11 −
U

(k)
11 .
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AWM-HB method. Starting with B(0) = A(0), we recursively define for k =
1, 2, . . . , J ,

B̂(k) =

[
B̂

(k)
11 0

Â
(k)
21 B(k−1)

][
I B̂

(k)−1

11 Â
(k)
12

0 I

]
} (I −Qak−1)(Ik − Ik−1)Vk
} Vk−1

,

and then let

B(k)−1

=
[
Y

(k)
1 , Y

(k)
2

]
B̂(k)−1

[
Y

(k)
1 , Y

(k)
2

]T
.

Here we have chosen

B̂
(k)
11 ≡ B(k)

11 = (D
(k)
11 − L(k)

11 )D
(k)−1

11 (D
(k)
11 − U (k)

11 ),

which stems from the symmetric Gauss–Seidel splitting of the first block A
(k)
11 in (5.2).

Also, Â
(k)
12 = Y

(k)T

1 A(k)Y
(k)
2 and the transformation matrices Y

(k)
1 and Y

(k)
2 are given

by (see (4.2))

Y
(k)
2 = Ikk−1,

Y
(k)
1 =

(
I − Ikk−1G̃

−1
k−1I

k−1
k Gk

)[ I
0

] } Nk \ Nk−1

} Nk−1
.

In the test presented below, the symmetric Gauss–Seidel method is further employed
to obtain an approximation G̃k to the Gram matrix Gk of level k. This formally
corresponds to the choice m = 1 and πm(t) = 1− t in the polynomial approximation
(3.4).

MG method. Here is the method with one Gauss–Seidel smoothing. Starting
with B(0) = A(0), for k = 1, 2, . . . , J , we recursively define

B̂(k) =

[
D(k) − L(k) 0

Y
(k)T

2 A(k) I

] [
D(k)−1

0
0 B(k−1)

] [
D(k) − U (k) A(k)Y

(k)
2

0 I

] } Vk
} Vk−1

and then

B(k)−1

= [I, Y
(k)
2 ]B̂(k)−1

[I, Y
(k)
2 ]T .

Here, Y
(k)
2 = Ikk−1 and we may formally set Y

(k)
1 = I. Formally, we shall adopt the

notation Â
(k)
12 = Y

(k)T

1 A(k)Y
(k)
2 = A(k)Ikk−1 and Â

(k)
21 = Y

(k)T

2 A(k)Y
(k)
1 = Ik−1

k A(k).
This method has the same form as the HB-MG method with different transformation
matrices Y

(k)
1 and Y

(k)
2 from the HB method. The major difference here is that Y

(k)
1

is a square matrix, and hence B̂(k) has a larger dimension than B(k).
The blocks D(k), L(k), and U (k) in B̂(k) correspond to the standard splitting

A(k) = D(k) −L(k) −U (k) into diagonal, lower-triangular and upper-triangular parts.
GS method. The preconditioner for A(k) is simply given by B(k) = (D(k) −

L(k))D(k)−1

(D(k) − U (k)).

The additive version corresponds to a simple deletion of the blocks Â
(k)
12 and Â

(k)
21 ,

or Y
(k)T

2 A(k) and A(k)Y
(k)
2 for the MG method. The additive form of the MG method

is commonly referred to as the BPX method [6].



WAVELET-MODIFIED HIERARCHICAL BASIS II 513

Table 11
Iteration counts for multiplicative methods.

h = 1/16 h = 1/32 h = 1/64 h = 1/128
HB-MG 13 19 25 32

AWM-HB 10 10 10 10
MG 11 13 14 15

GS-PCG 11 24 51 105
# unknowns 3 375 29 791 250 047 2 048 383

Table 12
CPU timings (seconds) for multiplicative methods.

h = 1/16 h = 1/32 h = 1/64 h = 1/128
HB-MG 4.72 57.0 601.79 6550.95

AWM-HB 9.66 81.51 656.80 5594.33
MG 2.28 22.74 195.81 1782.24

GS-PCG 1.13 20.37 342.49 5788.32
# unknowns 3 375 29 791 250 047 2 048 383

Table 13
CPU timings (seconds) for multiplicative methods with optimization.

h = 1/64
HB-MG method 48.95

AWM-HB method 42.99
MG method 13.46

GS-PCG method 33.59
# unknowns 250 047

Table 14
Iteration counts for additive methods.

h = 1/16 h = 1/32 h = 1/64 h = 1/128
HB 30 46 67 94

AWM-HB 16 18 19 20
BPX (MG & CG) 10 11 12 13

GS-PCG 11 24 51 105
# unknowns 3 375 29 791 250 047 2 048 383

Table 15
CPU-timings (seconds) for additive methods.

h = 1/16 h = 1/32 h = 1/64 h = 1/128
HB-MG 5.82 72.68 853.96 1 0123.75

AWM-HB 7.57 69.73 598.62 5249.12
BPX (MG & CG) 2.10 18.94 165.55 1511.75

GS-PCG 1.11 19.99 341.91 5782.32
# unknowns 3 375 29 791 250 047 2 048 383

All methods are used as preconditioners in the CG iteration applied to Ax = d,
A = A(J), with the MG method as the only exception. The stopping criterion for a
given preconditioner B was

rTB−1r ≤ 10−8rT0 B
−1r0,

where r is the current residual and r0 is the initial one.
The experiments were conducted by using a SUN Ultra 1 (170MHz) workstation.
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The experiments (Tables 12 and 15) indicate that the MG method has the best
performance in CPU timing. From Tables 11 and 14, we see that the convergence rate
for the AWM-HB method is uniform, though the CPU timing is more than the MG
method. We believe that there are other implementation methods which can improve
the CPU timing significantly.

Finally, we remark that we should be careful when measuring CPU timings, since
they depend on how the code is compiled. For example, we show in Table 13 the per-
formance of the same methods as in Table 11, using the option -fast in the FORTRAN
77 compiler on a SUN Ultra 1 workstation. The speedup of the computation in the
CPU timing is clearly significant for the test problems. The authors are indebted to
Igor Kaporin for this observation.
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